Estimation of aquifer properties based on pressure variations at monitoring wells caused by transient water-supply pumping

Velimir V Vesselinov¹, Dylan R Harp¹ Richard J Koch³, Kay H Birdsell¹, Danny Katzman²

¹ Earth and Environmental Sciences, Los Alamos National Laboratory, New Mexico ² Environmental Programs, Los Alamos National Laboratory, New Mexico

³ Koch Consulting, Los Alamos, New Mexico

LA-UR-08-0655

Problem statement

- Characterization of large-scale variability of aquifer properties (aquifer heterogeneity) is a difficult but very important task (e.g. for model predictions of contaminant transport)
- Standard (single/cross-well) pumping tests are applied usually. However, the tests may be expensive and difficult to execute (e.g. may require substantial time for aquifer recovery before pumping test; measurement errors may be substantial when drawdowns are small)
- Analyzing aquifer responses at monitoring wells to pumping transients that occur naturally during water-supply pumping may be a much cheaper and better alternative. In this case, data are collected at multiple pumping and observation wells
- Some of the benefits in analyzing responses to water-supply pumping transients when compared to standard pumping tests are:

Cheap

- Aquifer is stressed more intensely
- Long-term records (+ repetitions in pumping regimes) allow reduction of measurement errors and estimation uncertainties
- Multiple stress points (pumping wells) and observation points (monitoring wells) allow for an efficient tomographic analysis (Neuman, 1972; Vesselinov et al., 2001; etc) of aquifer heterogeneity

Study area

- Regional aquifer beneath Los Alamos National Lab (LANL), Northern New Mexico, USA
- Aquifer is highly heterogeneous; complex 3D flow conditions
- 7 water-supply wells in close vicinity to the study area; more (~20) water-supply wells close by
- ~50 observation wells
- ~100 well screens
- 3,309,682 water-level observations (currently)
- > 70,248 daily pumping records (currently)
- Contaminants derived from LANL are observed in the regional aquifer

Pumping records (10/2004-12/2007)

- Daily data
- Unique patterns
- PM-2, PM-5, and O-4 are the major water producers (note the different scales of y-axes)
- New data already available but have not been analyzed yet

Water-level vs. pumping records

Visual comparisons demonstrate correlations between the water levels and the pumping regimes. <u>Goals</u>:

- 1. Fingerprint the pumping wells causing the observed water-level fluctuations
- 2. Estimate effective aquifer properties using a simple analytical method
- 3. Estimate aquifer heterogeneity using a tomographic approach based on a simple numerical model

Methodology of Approach 1: Analytical analysis

- Simple analytical model (Theis + superposition) taking into account the pumping records of all the pumping wells (7)
- Pressure variations of each monitoring well (R-11, R-15, R-28) are analyzed independently
- Calibration of the analytical model to reproduce observed pressures variations using Levenberg-Marquardt algorithm
- As a result, effective large-scale properties (T & S) of the aquifer between pumping and monitoring wells are estimated
- The same results could have been obtained if specially designated pumping tests were conducted at each water-supply wells
- The numerical models are created and the obtained results are analyzed using automated (interactive) pre- and post-processing. In this way, the models can easily be updated when new data become available
 - Model-input files are automatically generated
 - All the information (water levels, pumping records, well locations, etc) is automatically extracted from a database and applied in the inverse models

Theis equation

$$s = \frac{Q}{4\pi T} W(u) = \frac{Q}{4\pi T} W\left(\frac{r^2 S}{4Tt}\right)$$

s - drawdown (L), Q - pumping rate (L³T⁻¹), T - transmissivity (L²T⁻¹), W(u) - well function r - distance between the pumping well and observation well (L), S – storativity, t - time since pumping commenced (T).

Theis equation applying the principle of superposition

$$s = \sum_{i=1}^{N} \sum_{j=1}^{M_{i}} \frac{Q_{ij} - Q_{ij-1}}{4\pi T_{i}} W \left(\frac{r_{i}^{2} S_{i}}{4T_{i} \left(t - t_{Qij} \right)} \right)$$

N - number of pumping wells, M_i - number of pumping periods (i.e. number of pumping rate changes), Q_{ij} - pumping rate of well *i* during pumping period *j*, and t_{Qij} - time when the pumping rate changed at well *i* during pumping period *j*

Inverse results using analytical method

- >1,000 calibration targets
- > 15 adjustable aquifer parameters in each inverse model: 7 effective T's; 7 effective S's; initial water level
- The model fingerprints the pumping wells that produce the observed drawdown responses
- Pumping wells that do not produce drawdown responses are rejected in the model by estimating effective properties that preclude pumping drawdowns (e.g. high T; low S)

1779.4

9/21/2004

9/21/2005

9/21/2006

9/21/2007

Inverse results using analytical method

Effective parameter estimates; if standard cross-hole pumping tests have been conducted at each water-supply well, similar parameter estimates would have been obtained

log ₁₀ T [m ² /d]											
	PM-1	PM-2	PM-3	PM-4	PM-5	O-1	O-4				
R-11	-	3.5	4.0	3.2	-	-	-				
R-15	-	3.3	3.4	3.2	3.7	-	-				
R-28	-	3.5	3.8	3.7	-	-	-				
			Mean 3.5								
			Variance		0.069						
log ₁₀ S [-]											
$\log_{10} S$	[-]										
log ₁₀ S	[-] PM-1	PM-2	PM-3	PM-4	PM-5	O-1	O-4				
log ₁₀ S R-11	[-] PM-1 -	PM-2 -1.5	PM-3 -0.1	PM-4 -1.1	PM-5 -	O-1 -	0-4 -				
log ₁₀ S R-11 R-15	[-] ₽M-1 - -	PM-2 -1.5 -1.9	PM-3 -0.1 -1.5	PM-4 -1.1 -1.7	PM-5 - -1.5	O-1 - -	O-4 - -				
log ₁₀ S R-11 R-15 R-28	[-] PM-1 - - -	PM-2 -1.5 -1.9 -1.5	PM-3 -0.1 -1.5 -0.4	PM-4 -1.1 -1.7 -1.2	PM-5 - -1.5 -	O-1 - - -	O-4 - - -				
log ₁₀ S R-11 R-15 R-28	[-] PM-1 - - -	PM-2 -1.5 -1.9 -1.5	PM-3 -0.1 -1.5 -0.4	PM-4 -1.1 -1.7 -1.2	PM-5 - -1.5 -	O-1 - - - Mean	O-4 - - - -1.2				

Methodology of Approach 2: Hydraulic Tomography

- Simple numerical model (2D, transient) taking into account the pumping records of all the pumping wells
- Calibration of the numerical model to reproduce observed pressures variations using Levenberg-Marquardt algorithm
- Pressure records of all the monitoring well (currently, R-11, R-15, R-28) are simultaneously analyzed
- Spatial heterogeneity of the aquifer is estimated using a geostatistical method (kriging and pilot points [de Marsily, 1976])
- The numerical models are created and the obtained results are analyzed using automated (interactive) pre- and post-processing. In this way, the models can easily be updated when new data become available
 - Computational grids and input files are automatically generated
 - All the information (water levels, pumping records, well locations, etc) is automatically extracted from a database and applied in the inverse models

Inverse results using numerical model

How accurately can the numerical model reproduce observed waterlevels based on the pumping records of all the water-supply wells?

R-11

Inverse results using numerical model

How accurately can the numerical model reproduce observed waterlevels based on the pumping records of all the water-supply wells?

R-15

Inverse results using numerical model

How accurately can the numerical model reproduce observed waterlevels based on the pumping records of all the water-supply wells?

R-28

Tomographic estimates of aquifer spatial heterogeneity (single realization from a series of alternative possible solutions)

- ~3000 calibration targets (there is data redundancy)
- > 57 pilot points; 117 adjustable parameters (in this case)

Transmissivity (T)

Storativity (S)

Legend: black stars – pumping wells; purple stars -- observation wells; black dots – pilot points

Estimated aquifer spatial heterogeneity

Tomographic estimate of transmissivity (T)

Aquifer structure deduced from the analytical analyses

	log ₁₀ T [m²/d] Uniform (analytical) analysis									
_		PM-1	PM-2	PM-3	PM-4	PM-5	O-1	O-4	Tomo-	
	R-11	-	3.5	4.0	3.2	-	-	-	graphic	
	R-15	-	3.3	3.4	3.2	3.7	-	-	analysis	
	R-28	-	3.5	3.8	3.7	-	-	-		
-							Mean	3.5	3.0	
					Variance		0.069	2.1		
	log ₁₀ S [-] Uniform (analytical) analysis									
_ [PIVI-1	PM-2	PM-3	PM-4	PM-5	O-1	O-4	Tomo-	
	R-11	- PIVI-1	PM-2 -1.5	PM-3 -0.1	PM-4 -1.1	PM-5 -	O-1 -	0-4 -	Tomo- graphic	
	R-11 R-15	- -	PM-2 -1.5 -1.9	PM-3 -0.1 -1.5	PM-4 -1.1 -1.7	PM-5 - -1.5	O-1 - -	0-4 - -	Tomo- graphic analysis	
	R-11 R-15 R-28		PM-2 -1.5 -1.9 -1.5	PM-3 -0.1 -1.5 -0.4	PM-4 -1.1 -1.7 -1.2	PM-5 - -1.5 -	O-1 - - -	O-4 - - -	Tomo- graphic analysis	
	R-11 R-15 R-28		PM-2 -1.5 -1.9 -1.5	PM-3 -0.1 -1.5 -0.4	PM-4 -1.1 -1.7 -1.2	PM-5 - -1.5 -	O-1 - - Mean	O-4 - - - -1.2	Tomo- graphic analysis	
R	R-11 R-15 R-28 Conclu esults are	- - ISIONS consistent	PM-2 -1.5 -1.9 -1.5	PM-3 -0.1 -1.5 -0.4	PM-4 -1.1 -1.7 -1.2	PM-5 - -1.5 - Va	O-1 - - Mean riance	O-4 - - - -1.2 0.4	Tomo- graphic analysis -1.7 2.8	

Meier at al., 1998; Sanchez-Villa, 1999; Vesselinov at al., 2001, etc.]

Compared to the non-uniform analyses, uniform analyses overestimate the mean aquifer properties, and underestimate the aquifer heterogeneity (variances)

> Uniform case: variability in T suggests pronounced aquifer heterogeneity (non-stationarity)

➢ Uniform case: var(S) > var(T). Non-uniform case: var(T) ≈ var(S); var(S) is still substantial (this may be real or caused by 3D or other effects unaccounted in the conceptual model)

Conclusions (cont.)

- Tomographic analysis based on <u>long-term</u> (3 year) production and water-level records is successfully applied to extract information about the <u>large-scale</u> properties of the regional aquifer
- Pumping influences of individual pumping wells are fingerprinted despite the small magnitudes of observed drawdowns
- Analysis of the results based on a simple analytical model suggests that there may be large-scale hydrogeologic structures (faults and troughs) with contrasting aquifer properties
- Similar estimates of aquifer heterogeneity are also obtained using the tomographic analysis based on numerical model
- Information content of the data collected during previous pumping tests (at PM-2, PM-4) is much inferior to the information content of the data collected during long-term water-supply pumping
- This is a novel and unique research work; similar analyses have not been previously published in the hydrogeologic literature
- **Potential future work:**
- Include longer water-level/pumping records and more monitoring wells
- Evaluate uncertainty in estimates of aquifer heterogeneity
- Extend the analysis to 3D tomography